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This paper examined the effects of an instructional approach known as Spatial Temporal Mathematics (ST
Math) on teacher beliefs about mathematics teaching. Participants were 339 elementary teachers teaching
grades 2-5 who were randomly assigned to a control or treatment group. Hierarchical linear modeling was
used to determine the effects of the intervention on self-efficacy, outcome expectancy, and instructional
practices using scientific reasoning. While the treatment did not yield significant effects in teacher out-
comes, our secondary analysis indicated that time on ST Math and the integration of ST Math into daily
instructions were positively associated with teacher efficacy and instructional practices using scientific

reasoning. Implications of the results on teacher beliefs about mathematics teaching are discussed.
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1. Introduction

Through extensive research on teacher instructional practices,
our understanding of effective mathematics teaching and learning
has improved markedly, allowing us to provide students with a
variety of instructional activities in the classroom. These activities
include computer-mediated games and other curricular ap-
proaches. However, while the information-technology revolution
continues to spread around the globe, the influence of technologi-
cal change on mathematics instruction is less well understood. We
do not know, for example, whether technological innovations can
be used to facilitate mathematics instructions and the impact they
have on teachers' efficacy and classroom practices. Emerging re-
search is beginning to fill this gap. In this paper we report the ef-
fects of a computer-based teaching tool known as Spatial
Temporal Mathematics (ST Math) on teacher self-efficacy, outcome
expectancy, and instructional practice.
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2. Theoretical framework
2.1. Self-efficacy and outcome expectancy

Self-efficacy is defined by Bandura (1977) as beliefs individuals
hold about their own abilities to perform a particular kind of task.
These beliefs affect the level of effort that individuals exert, their
persistence in working through challenges, their resiliency when
experiencing failures, and their means of coping with change.
Bandura (1997) posited that self-efficacy depends upon the con-
text in which the task is performed—that is, a person may produce
different outcomes under different circumstances. For example,
while teachers’ content knowledge in mathematics affects their
instructional practices, those who judge themselves as efficacious
in teaching mathematics are expected to be more successful. Hav-
ing similar content knowledge, teachers who view themselves as
inefficacious in teaching mathematics will, other factors being
equal, be less effective in the classroom. In this way, individuals
who see themselves as capable may come to expect negative out-
comes for a given task due to the specific context or environment
in which the task must be performed. This phenomenon is referred
to as outcome expectations. The distinction between these two
concepts can be summarized as follows:

Perceived self-efficacy is a judgment of one’s capacity to accom-
plish a certain level of performance, whereas an outcome
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expectation is a judgment of the likely consequence such
behavior will produce (p. 391).... In social, intellectual, and
physical pursuits, those who judge themselves highly effica-
cious will expect favorable outcomes, self-doubters will expect
mediocre performances of themselves and thus negative out-
comes. (Bandura, 1986, p. 392)

The construct of teacher efficacy was first conceived of by the
RAND researchers as “the extent to which the teacher believed
he or she had the capacity to affect student performance” (Berman,
McLaughlin, Bass, Pauly, & Zellman, 1977, p. 137). Teacher efficacy
initially measured by responses to two survey items: (1) “If | really
try hard, I can get through to even the most difficult or unmoti-
vated students,” and (2) “When it comes right down to it, a teacher
really can't do much [because] most of a student’s motivation and
performance depends on his or her home environment.” The first
item measures a teacher's sense of self-efficacy while the second
item assesses a teacher's sense of outcome expectancy. Collec-
tively, these two items describe teacher efficacy, which has been
shown to be associated with teacher practice and gains in student
proficiency (Berman et al.,, 1977; Gibson & Dembo, 1984).

Self-efficacy typically precedes outcome expectancy—that is,
based on the teacher’s sense of self-efficacy, he or she formulates
the outcome expectancy of a given task (Tschannen-Moran, Hoy,
& Hoy, 1998). Drawing upon Bandura’s theory of social learning,
Gibson and Dembo (1984) define teacher efficacy (self-efficacy
and outcome expectancy) as follows:

Outcome expectancy would essentially reflect the degree to
which teachers believed the environment could be controlled,
that is, the extent to which students can be taught given such
factors as family background, 1Q, and school conditions. Self-
efficacy beliefs would indicate teachers’ evaluation of their abil-
ities to bring about positive student change. (p. 570)

2.2. Teacher efficacy and instructional practices

Two decades after its inception, Tschannen-Moran et al. (1998)
offered a more precise definition for teacher efficacy as a “teacher’s
beliefs in his or her capability to organize and execute courses of
action required to successfully accomplish a specific teaching task
in a particular context” (p. 233). This conceptualization accounts
for teachers’ perceptions of their own competence as well as their
assessment of the teaching context. Tschannen-Moran et al. further
suggested that teacher efficacy is a malleable trait, one influenced
by the teacher’s performance and experience.

If teacher efficacy is malleable rather than fixed, it follows that
teacher efficacy varies depending upon teacher experience. For ele-
mentary pre-service teachers, efficacy for teaching mathematics is
in part a function of past experiences with mathematics, instruc-
tional strategies, and mathematics anxiety (Gresham, 2009; Swars,
2005; Swars, Daane, & Ciesen, 2006). Building on their model,
Tschannen-Moran et al. (1998) investigated how teacher efficacy
can change over time. They found that pre-service teachers devel-
op efficacy beliefs through coursework and student teaching in the
field. For novice teachers (those completing their first year of
teaching), efficacy was most associated with stress, commitment
to teaching, support, and preparation. The authors noted that
“changes in efficacy beliefs among inservice teachers seem to be
more difficult to produce and sustain” (Tschannen-Moran et al.,
1998, p. 236). In fact, practicing teachers may experience a lower
sense of efficacy at the onset of any instructional change, with their
teaching efficacy increasing again when they acquire new strate-
gies to cope with the changes and observe an increase in student
learning as a result of these changes. These findings are important
in setting realistic expectations for how teacher efficacy is likely to

change at the onset of any programmatic intervention and can in-
form ways to provide the proper support for teachers implement-
ing new teaching strategies. Of course, teacher efficacy is not
developed only through self-reflection. Ross (1994) found, for
example, that teacher efficacy could be enhanced through dis-
trict-wide professional development using cooperative learning
techniques. This study suggested that teachers’ knowledge gained
from the professional development was associated with positive
changes in their efficacy beliefs.

Teacher efficacy is particularly important because it can moder-
ate important variation in teachers’ attitudes and behavior. Gibson
and Dembo (1984) postulated that teachers who exhibit high self-
efficacy and outcome expectancy would have relatively high confi-
dence in their abilities to teach, persist longer, focus on academic
instructions, and provide students with constructive feedback. On
the other hand, teachers who have low self-efficacy and outcome
expectancy would have less confidence in their abilities to be effec-
tive teachers and give up easily on being effective. Through class-
room observations with a small number of teachers (N=8),
Gibson and Dembo (1984) found that low-efficacy teachers spent
a greater amount of time focusing on non-academic activities com-
pared to high-efficacy teachers who spent a lesser amount of time
on these activities (and thus more time on academic materials).
High-efficacy teachers also allocated less time (28%) to small group
instruction compared to low-efficacy teachers who spent a greater
amount of time on small group instruction (48%). High- and low-
efficacy teachers also differed in the feedback they provided to
students, with high-efficacy teachers communicating higher
expectations and persisting with students through challenging
problems. While the small sample used in this study precludes
definitive conclusions about the practices exhibited by teachers
with varying degrees of efficacy, it does highlight a critical point:
teacher efficacy influences the ways teachers interact with stu-
dents in the classroom thus shaping students' learning experiences
in ways that are nearly certain to impact learning.

Teachers influence student learning and development in multi-
ple ways. They directly provide students with content knowledge,
but also indirectly shape students’ educational experiences that
lead to the formation of key aspirations and expectations. These
indirect influences can be strong enough to affect student aca-
demic attainment. Benner and Mistry (2007) found that teacher
expectations for students affect students’ own expectations and
educational attainment. This shows that the relationship between
teacher expectations and students’ academic outcomes is mediated
by student expectations and self-concept of ability—that is, teacher
expectations shape students' expectations and self-concept, which
in turn affect their academic performance. Of course, students may
not have accurate assessments of teachers’ expectations in the
classroom. However, Chouinard, Karsenti, and Roy (2007) found
that teacher beliefs and expectations, regardless of whether they
are accurate, can influence students’ beliefs about learning mathe-
matics among secondary school students. This research showed
that perceived support from social agents (namely, teachers and
parents) affects students’ beliefs about mathematics, which affects
their achievement goals, and in turn moderates effort in learning
mathematics. Teachers, along with parents, influence students’
competency beliefs, their attitudes about the utility of mathemat-
ics, and their mastery goals and effort in learning mathematics.
These findings suggest that while teacher beliefs and expectations
may not directly link to student performance, they can shape stu-
dents’ perceptions about their ability to learn, which ultimately af-
fects their achievement. These effects are evident in another study
conducted by Lavigne, Vallerand, and Miquelon (2007), which re-
vealed that teachers’ support for the development of students’
autonomy affects students’ beliefs about their own competence
and autonomy toward science learning, which then influences
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their motivation and ultimately their intentions to pursue careers
in the field of interest.

2.3. Computer-based instruction supporting teaching and learning

While varying in features, content, and formats, computer-
based instruction (CBI) has been found to have an impact on stu-
dent learning and teacher practice. In an experimental study
(N = 87) examining the effects of CBI on students’ attitudes toward
mathematical instruction and problem solving skills, Shyu (1999)
found that video-based instruction was positively associated with
student achievement. CBI's effects on student achievement were
also observed among students with diverse learning needs. Using
a quasi-experimental study (N =52) to examine the effects of an
integrated computer software program on middle school special
education students’ performance on the state standardized test,
Malouf, Jamison, Carlucci, and Kercher (1990) found the program
to have a positive impact on student achievement in mathematics.
Similar results were found with gifted and talented students in the
CBI program who outperformed their gifted and talented peers en-
rolled in the standard curriculum (Ysseldyke, Tardrew, Betts, Thill,
& Hannigan, 2004). Additional research has investigated how spe-
cific features of CBI influence student learning. For example, indi-
vidually personalized CBI was found to improve students’
attitudes toward mathematics and enhance the performance of
students with lower-level skills in mathematics (Ku, Harter, Liu,
Thompson, & Cheng, 2007). Greater efficiency in learning mathe-
matics (reduced time required to complete exercises) was ob-
served in audio-based CBI compared to text-based CBI (Rehaag &
Szabo, 1995). Furthermore, CBI using the spatial contiguity princi-
ple has been found to have favorable effects on student achieve-
ment compared to the non-spatial contiguous model of CBI
(Harter & Ku, 2008).

Extant research suggests that unlike traditional classrooms
which are characterized as teacher-centered, classrooms that use
CBI are commonly more student-centered and student self direc-
ted. When computers are used for instructional purposes, teachers
are more likely to see themselves as facilitators of learning and
provide students with more personalized attention (Bracey,
1988). In an earlier study, Schofield, Eurich-Fulcer, and Britt
(1994) found that while students believed that teachers provided
better assistance compared to a computer-based tutor, students
preferred to use the computer tutor when available. This study also
suggested that CBI improves students’ time on task, interest in
learning, and motivation. In a more recent study, Frye and Dornisch
(2008) discovered that students’ perceptions about their teachers
are moderated by the use of technology: students’ whose math
and science teachers more frequently used technology to facilitate
instructions were also more likely to rate their teachers as having
greater competency in knowledge of the subject area and ability to
present content to the class.

2.4. Spatial-Temporal Math

Expanding on the existing research focusing on teacher efficacy
and CBI, this paper explores changes in teacher efficacy and prac-
tice as the result of a computer-based approach to mathematics
instruction known as Spatial Temporal Mathematics (ST Math).
ST Math utilizes images to help students develop spatial-temporal
cognition that can lead to advanced understanding of mathemati-
cal concepts such as fractions, proportions, symmetry, and other
arithmetic operations. A randomized experimental design was
used to examine the relationships between student participation
in the ST Math program and educational outcomes on the Califor-
nia Standards Test (CST), math achievement and ability, and stu-
dent motivation. Students in each participating grade level

(second through fifth grade) were randomly assigned to either a
treatment group or a control group. Supervised by their classroom
teachers, students in the treatment group received a minimum of
two 45-min sessions each week of the ST Math program during
regular instruction. Students in the control group experienced their
regular mathematics instruction that can be classified as “business
as usual.” The results of the first year implementation indicate that
ST Math had a positive impact on student achievement in mathe-
matics on the state standardized assessment (CST) with the effect
size of 0.37 (Rutherford et al., 2010). Complementary to the main
study, this paper examines whether ST Math has a similar impact
on teacher beliefs about their efficacy and classroom practices.

3. Method

It is common for research in education and other social sciences
to have data with hierarchical structure (students nested in class-
rooms or classrooms nested in schools). In this study, the nesting of
classrooms in schools can affect the outcomes of the study (i.e.
teachers’ beliefs about their practice may vary depending on the
composition of school where they work). As the result, variation
in teachers’ beliefs and attitudes can be found both between teach-
ers within the same school and across schools. Due to the nested
structure of the data with teacher at level 1 and school at level 2,
we cannot ignore the variability associated with each level of the
hierarchy. Given the multi-level structure of the data, with teach-
ers nested in schools, we applied multi-level statistical modeling
(Raudenbush & Bryk, 2002; Snijders & Bosker, 1999) to estimate
the effects of ST Math on teachers’ self-efficacy, outcome expec-
tancy, and instructional practice.

The sample consisted of 339 elementary school teachers teach-
ing grades 2-5 in the western US. The classrooms served a diverse
student population with 83% Latino, 6% White, 6% Asian, 2% African
American, and 3% Other. Students from low-income families en-
rolled in free/reduced lunch programs, made up 83% of the student
population. English language learners (ELL) made up 61% of the
student population, Student achievernent data in 2008-2009 indi-
cated that students in this county performed higher than other stu-
dents in the state in science, mathematics, and language arts. Table
1 provides a summary of student achievement in 2008-2009 and
Table 2 describes characteristics of the teacher participants.

3.1. Data sources

A 40-item questionnaire was sent electronically to the elemen-
tary teachers in both the treatment and control groups. Teachers in
the treatment group were asked to complete 28 additional items
describing their implementation of ST Math in their classrooms,
beliefs about ST math in improving instruction, and the support
they received to implement the intervention. Participants had
2 weeks to complete the online survey. A total of 368 teachers
completed the survey. Of those, 29 cases had missing data, result-
ing in 339 observations represented in the complete data set.

The questionnaire consisted of items describing participants’
teaching experience, teacher self-efficacy, teaching outcome
expectancy, and instructional practices as related to mathematics.
The Mathematics Teacher Efficacy Belief Instrument (MTEBI) was
used to evaluate Personal Mathematics Teaching Efficacy (PMTE)
and Mathematics Teaching Outcome Expectancy (MTOE). This
instrument was developed by Enochs, Smith, and Huinker (2000)
to assess self-efficacy and outcome expectancy in mathematics
with reliability of 0.88 and 0.75 respectively. Participants graded
items on a Likert scale: (1) strongly disagree; (2) disagree; (3) neu-
tral; (4) agree; (5) strongly agree. The items described teachers’
outcome expectancy in mathematics (e.g., When a student does
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Table 1
Summary of students scoring at proficient and advanced levels in 2008-2009.
Grade level County State
Mathematics (%) Science (%) Language arts (%) Mathematics (%) Science (%) Language arts (%)
2 70 - 60 63 - 53
3 70 - 50 64 - 44
4 73 ~ 69 66 - 61
5 63 59 61 57 49 54

Note: Test scores are not available for science in grades 2-4.

Table 2
Characteristics of teachers in the sample (N =339),
Years Treatment Control
Total years Number of years Total years Number of years teaching
of teaching teaching mathematics of teaching mathematics
1-2 years 5 4 1 1
3-5years 15 17 10 9
6-10 years 58 64 12 12
11-15 years 75 71 39 41
16-20 years 40 40 14 13
21 years or more 50 47 20 19

better in mathematics, it is often because the teacher exerted a little
extra effort) and self-efficacy (e.g., I know how to teach mathematics
concepts effectively). Participants also indicated the extent (very
rarely, rarely, sometimes, often, very often) to which they inte-
grated scientific reasoning in the classroom (e.g., make predictions,
analyze data, support conclusions with evidence, consider alternative
explanations).

While factor analysis yielded four constructs related to teach-
ers’ beliefs and attitudes about mathematics instructions, only
three constructs with high reliability were used in the analysis to
compare differences between teachers in the treatment and con-
trol groups. These three constructs are: (1) Mathematics Teaching
Outcome Expectancy (Cronbach’s alpha=0.787);, (2) Personal
Mathematics Teaching Efficacy (Cronbach’s alpha = 0.853); (3) and
integration of scientific reasoning during instruction (Cronbach’s
alpha = 0.889).

3.2. Analysis

Multi-level analysis was used to account for the data structure
with teachers (level 1) nested in schools (level 2) (Raudenbush &
Bryk, 2002; Snijders & Bosker, 1999). We used hierarchical linear
modeling (HLM) to estimate the relationship between teachers’
participation in ST Math and self-efficacy, outcome expectancy,
and use of scientific reasoning in teaching mathematics. Initial
analysis for the unconditional model indicated a small amount of
variation in outcome measures across the schools: intra-cluster
correlation of 0.009 for teacher efficacy, 0.002 for outcome expec-
tancy, and 0.042 for scientific reasoning. The random-effects ap-
proach was used to investigate variation of outcomes across
schools, thus any significant effects could be generalized to the lar-
ger population beyond the sample schools. This approach is justi-
fied by the rationale that information about the sample schools
(N = 44) is exchangeable (Snijders & Bosker, 1999), First, an uncon-
ditional model was generated to determine variability in teacher
outcomes within and between schools. Subsequently, conditional
models with random intercepts (intercepts vary across schools)
and random slopes (slopes vary across schools) were used to assess
how the relationships between ST Math participation and various
outcomes varied across schools. Teacher characteristics were de-
scribed in level 1, school characteristics were captured at level 2.

3.2.1. Independent variables

Level 1:
(1) Teaching experience: Number of years of teaching experi-
ence in mathematics (1= 1-2 years; 2 =3-5years; 3 =
6-10; 4=11-15years; 5=16-20 years; 6 =21 years or
more).
(2) Time on ST Math: The number of minutes on ST Math per
week,
(3) Integration of ST Math: The extent to which teachers inte-
grated ST Math in their daily instruction (1 = Never;
2 = Less than once a week; 3 =0Once a week; 4=A few
times a week; 5 = Every day).
(4) ST Math: Participation in ST Math (0 = non-ST Math par-
ticipant; 1 =ST Math participant).
Level 2:
(1) Percent free/reduced lunch: Percent of students qualified
for free and reduced lunch.
(2) Percent ELL: Percent of students identified as ELL.

3.2.2. Dependent variables

(1) Teaching efficacy: Teachers' self-efficacy on teaching mathe-
matics (1 =Strongly disagree; 2 =Disagree; 3= Neutral;
4 = Agree; 5 = Strongly agree),

(2) Teaching outcome expectancy: Teachers' cutcome expectancy
in terms of their students learning mathematics (1=
Strongly disagree; 2 = Disagree; 3 = Neutral; 4 = Agree; 5=
Strongly agree),

(3) Scientific reasoning: The extent to which teachers use scien-
tific reasoning in their math instruction (1=Very rarely;
2 = Rarely; 3 = Sometimes; 4 = Often; 5 = Very often).

Only classrooms with four or more students were included in
the HLM analyses thus reducing the sample size from 339 to 325
teachers in 44 schools. Table 3 provides a summary of level-1
and level-2 predictors.

The following models were used to estimate the relationship
between participation in ST Math and teacher outcomes. Teacher
characteristics were described in level 1, and school characteristics
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Table 3

Descriptive statistics of level 1 and level 2 variables,
Variable name N Mean Standard deviation Minimum Maximum
Level-1 Descriptive statistics
Teaching experience 325 411 1.25 1.00 6.00
Time on ST Math 325 65.29 45.59 0.00 210.00
Integration of ST Math 325 2.20 151 0.00 4.80
ST Math 325 0.71 045 0.00 1.00
Teaching efficacy 325 4.21 0.44 254 5.00
Teaching outcome expectancy 325 3.53 0.50 1.63 4,88
Scientific reasoning 325 3.86 0.60 1.75 5.00
Level-2 Descriptive statistics
Percent freefreduced Lunch 44 83.27 9.93 64.00 100.00
Percent ELL 44 60.80 15.80 27.00 90.00

were captured at level 2. For the hierarchical analysis, the level-1
model was

Yl')' = ﬂﬂj + B])(XU -X.. ) + ﬁszZ,'j + Iy

where Y is the outcome of teacher i in school j (j=1,...,44

schools); Bq; is the mean for outcome in school j after controlling

for differences in teaching experience and treatment indicator; fy;

is the fixed level-1 covariate effect (years of teaching experience);

Boj is a treatment-indicator variable (1 = treatment; 0 = control).
The level-2 model was

Boj = Yoo + Yo Wi + Y Wi + U+g
By =710

Baj = Y20

where Wy;; is the percentage of students qualified for free/reduced
lunch programs; W,y is the percentage of students identified as
ELL; yoo is the mean outcome in the schools yg is the free/reduced
lunch composition effects; yo; is the English language learners com-
position effects; y10 is the pooled within-school regression coeffi-
cient for the level-1 covariate (years of teaching experience); y,o
is the pooled within-school regression coefficient for the level-1
covariate (treatment).

Four models were estimated. The first was an unconditionai
model for fg;. This resulted in a partition of the total variance in
Yy into its within-school (¢%) and between-school components
(t00). The second model examined the effects of years of teaching
experience on teacher outcomes. Formally,

Level 1:
Yy = Bg; + By; (Teaching Experience) +ry

Level 2:
Boj = Yoo + Ugj

Bij="10

Ba =Y

The third model added the treatment indicator as follows:
Level 1:

i = Boj + Byj (Teaching Experience) + f,; (ST Math) +r
Level 2:

Boj = Yoo + Uoj

By = Y1l

By ="Vn

The fourth model included measures specifying the school com-
position such as the percent of students qualified for free/reduced
lunch programs and percent of students identified as ELL.

Level 1:

Outcome ij = f; + By; (Teaching Experience) + ,; (ST Math) +ry

Level 2:

Boj = Yoo + You (Percent FRL) + y,, (Percent ELL) + uy;

By ="
Baj = V20
4. Results

The correlation analysis between program participation and
various outcome measures (shown in Table 4) indicated that many
factors were weakly associated. However, a strong positive associ-
ation was found between ST Math participation and the number of
ST Math minutes used per week (r=0.832, p <.001) suggesting a
strong fidelity of implementation. Furthermore, the strong positive
correlation between ST Math participation and the integration of
ST Math elements into the formal curriculum (r= 0.790, p <.001)
indicated that features of ST Math were being integrated into the
formal lessons. Interestingly, time spent on ST Math was also pos-
itively associated with integrating features of ST Math in the
formal curriculum (r = 0.863, p < .001). Significant positive associa-
tions were also found between teachers’ usage of scientific reason-
ing and Mathematics Teaching Outcome Expectancy (r=0.276,
p<.001) and Personal Mathematics Teaching Efficacy (r=0.576,
p <.001). In addition, a positive relationship was detected between
Mathematics Teaching Outcome Expectancy and Personal Mathe-
matics Teaching Efficacy (r=0.297, p <.001).

We explored these relationships further using multi-level anal-
ysis. As shown in Table 5, years of teaching experience (y,0 = 0.030,
se = 0.020) and treatment condition (y,q = —0.060, se = 0.054) were
not statistically related to teacher efficacy. School composition
such as the percent of students identified for free/reduced lunch
programs (yo; = 0.004, se = 0.005) and percent of students identi-
fied as ELL (o2 = —0.002, se = 0.003) did not have significant effects
on teacher efficacy.

Table 6 represents the results for teacher outcome expectancy.
After controlling for years of teaching experience and school
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Table 4
Correlations between various factors (N =325).
ST Math Personal Mathematics Mathematics Teaching Integration of Integration of ST  Time on
participation Teaching Efficacy (PMTE) Outcome Expectancy (MTOE)  scientific reasoning Math in class ST Math
Personal Mathematics -0.071
Teaching Efficacy (PMTE)
Mathematics Teaching —0.058 0.297""
Outcome Expectancy
(MTOE)
Integration of scientific 0.023 0576™ 0.276™
reasoning
Integration of ST Math in class ~ 0.790™ 0.014 0.005 0.098~
Time on ST Math 0.832" 0.003 -.043 0.072 0.863"
Number of years teaching -0.048 0.075 0.065 0.092~ —0.003 0.014
mathematics
~ Correlation is significant at 0.10 level (2-tailed).
" Correlation is significant at the 0.01 level (2-tailed).
Table 5 Table 7
Effects of ST Math on teacher efficacy. Effects of ST Math on teachers using scientific reasoning.
Fixed effect Coefficient Se t Ratio Fixed effect Coefficient Se t Ratio
[ntercept, Yoo 4.250 0.046 91477 Intercept, Yoo 3.867 0.065 59.551
Percent FRL, yo1 0.004 0.005 0.819 Percent FRL, yo; 0.008 0.007 1.166
Percent ELL, yo2 -0.002 0.003 -0.731 Percent ELL, yo2 —-0.006 0.004 -1.291
Teaching experience, Y10 0.030 0.020 1.511 Teaching experience, y;0 0.053 0.027 1.941
Treatment indicator, Y20 —-0.060 0.054 -1.109 Treatment indicator, y3o -0.009 0.073 -0.122
Random effect Variance component df x? p Value Random effect Variance component Df X2 p Value
Mean efficacy, uy 0.003 41 46.582 0.253 Mean efficacy, ugy 0.018 41 54.943 0.071
Level-1 effect, ry 0.191 Level-1 effect, ry 0.342
Table 6 .00
4s0f 425419
Effects of ST Math on teacher outcome expectancy. b e 3.86 3.86
4.00 | a _
Fixed effect Coefficient Se t Ratio P 350 :
Intercept, yoo 3.587 0.052 69.628 3 ;gg
Percent FRL, yo1 0.001 0.005 0.209 § 2‘00
Percent ELL, yo2 0.003 0.003 1.082 s !‘ < #Control
Teaching experience, y,o 0.026 0.022 1179 1'00 wTreatment
Treatment indicator, Y29 -0.080 0.061 -1.309 0‘ 50 Teatment
0,00
Random effect Variance component Df x? p Value Efficacy Qutcome Scientific
Mean efficacy, uy ~ 0.0001 41 38150  >.500 Expectancy  Reasoning
Level-1 effect, 0.245 Outcomes

composition, the treatment did not have a significant effect on tea-
cher outcome expectancy (yzo=—0.080, se=0.061). The results
also showed that teaching experience (y;o=0.026, se=0.022),
free/reduced lunch composition (yo, = 0.001, se =0.005), and ELL
composition (o2 = 0.003, se = 0.003) had no effect on teacher out-
come expectancy.

As shown in Table 7, the treatment had no effect on teacher
practice using scientific reasoning (y,0 = —0.009, se = 0.073). How-
ever, years of teaching experience had a significant positive effect
(y10=0.053, se = 0.027) on teacher practice using scientific reason-
ing. This suggests that teacher practice using scientific reasoning
tends to be greater with more years of teaching experience. School
composition such as the percent of students eligible of free/re-
duced lunch programs (yo; = 0.008, se =0.007), and ELL composi-
tion (yoz = —0.006, se=0.004) were not associated with teacher
practice. Fig. 1 provides a summary of results for teacher self-effi-
cacy, outcome expectancy, and instructional practice using scien-
tific reasoning.

While the results indicate that ST Math did not have significant
effects on teacher outcomes, our secondary analysis focusing on

Fig. 1. Average mean scores for teachers’ efficacy, outcome expectancy, and
teaching practice using scientific reasoning.

participants in the treatment group (N =231) showed interesting
results. We conducted multiple regression analysis to investigate
predictors of outcomes for teachers in the treatment group. First,
the combination of variables to predict teacher efficacy from years
of teaching experience, time on ST Math, and integration of ST
Math in the formal curriculum was statistically significant,
F(3,227)=5.79, p=.001. Time on ST Math and integration of ST
Math into daily instruction significantly predicted teacher efficacy.
That is, after controlling for years of teaching experience, teachers
who reported greater amounts of time on ST Math were also more
likely to report greater levels of efficacy, #=.002, t(227)=1.82,
p =.070. Interestingly, integrating ST Math into daily instruction
significantly predicted teacher efficacy, f=.143, t(227)=3.39,
p=.001. This suggests that teachers who integrate features of ST
Math in their daily lessons are also more likely to report greater
teacher efficacy. Results are shown in Fig. 2.

Second, years of teaching experience, time on ST Math, and inte-
gration of ST Math into daily lessons also predicted outcome
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Fig. 2. The relationships between efficacy and time on ST Math and integration of ST math in daily lessons.

expectancy for teachers in the treatment group, F(3,227)=5.85,
p =.001. Integrating ST Math into the daily lessons significantly
predicted teacher outcome expectancy, f=.193, t(227)=3.88,
p <.001. This means that teachers who reported integrating fea-
tures of ST Math in their daily lessons were also more likely to re-
port greater levels of outcome expectancy. Fig. 3 shows the results
for this section.

Third, collectively the above three variables also predicted tea-
cher practice using scientific reasoning, F(3,227)=10.42, p <.001.

5.00 ~
5. 4.00 1
<
8 /___/
[¥]
k'
o
& 300
Q
E
[+
g
-
O 200
1.00 T T T 1
0 52.50 105.00 157.50 210.00

Time on ST Math

Time on ST Math significantly predicted teacher practice,
B =.004,t(227) = 2.38, p =.018. In other words, teachers who spent
more time on ST Math were also more likely to report using scien-
tific reasoning when teaching mathematics. In addition, teachers
integrating features of ST Math in their daily lessons also reported
using scientific reasoning when teaching mathematics, f=.255,
t(227)=4.54, p <.001. Fig. 4 provides the results for this section.
Table 8 provides a summary of the findings from our secondary
analysis.
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Fig. 3. The relationships between outcome expectancy and time on ST Math and integration of ST math in daily lessons.
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Table 8

Multiple regression analysis summary for teaching experience, time on ST Math, and integration of st math predicting outcome measures (N = 231).

Variable Efficacy Outcome expectancy Scientific reasoning
B Se Se B Se
Constant 3.60" 17 2.817 20 2,727 23
Teaching experience -0.01 .02 -0.01 .03 -0.01 .03
Time on ST Math 0.01~ .01 0.01 01 0.01° .01
Integration of ST Math 0.14" .04 0.19" .05 026" .06
~ p<.10.
" p<.05.
" p<.01.

5. Discussion

While ST Math has been shown to have positive effects on stu-
dent achievement in mathematics after the first year of implemen-
tation (Rutherford et al., 2010), these previously reported effects
have not included changes to teacher self-efficacy, teaching out~
come expectancy, or instructional practices that integrate scientific
thinking. However, within the treatment group, we found that the
number of hours spent and the integration of ST Math in daily les-
sons were positively associated with these outcomes. These find-
ings suggest that ST Math can impact teachers' instructional
practices. Exposure to the program is likely to be an important fac-
tor that mediates the outcomes - that is, a given amount of time is
required before changes in teacher efficacy and instructional prac-
tices are observed. More generally, the findings of this study pro-
vide insight into the potential influence of CBI on teacher beliefs
and instructions in mathematics. In the following section, we dis-
cuss the implications of these findings in the context of opportuni-
ties and challenges that CBI can provide in supporting teaching and
learning mathematics. First, we explore the role that teachers play
in facilitating ST Math. We then discuss the potential effects of ST
Math on teachers’ beliefs, attitudes, and instructional practices.
Lastly, we address the limitations of the current investigation
and provide recommendations for future research.

5.1. Teachers’ role in implementing ST Math

Even though participating in the intervention did not change
teachers’ attitudes, beliefs or instructional practices in teaching
mathematics, teachers did report spending more time in the com-
puter lab. This time spent outside of the traditional classroom
setting can assist teachers in developing and implementing
instructional strategies that may not otherwise be pursued in the
traditional classroom setting. ST Math uses simulation and game-
based features to engage students in learning mathematical
concepts at a pace tailored to their specific learning needs, thus
allowing teachers to not only reach students using a different
mode of instruction but also to provide them with tailored assis-
tance. This type of instructional advantage was documented in
an earlier study using an artificial intelligence computer-based
tutoring program for high school students learning geometry
proofs. Schofield et al. (1994) noted a change in the social interac-
tions between students and their teacher—teachers giving students
more individualized assistance and students having greater control
over the kind and amount of help they needed from the teacher.
Schofield et al. argued that computer-based instruction did not re-
place the teacher; instead, it served as an additional resource to
facilitate student learning. Students asked for help from their
teachers when they felt that the computer's assistance was insuffi-
cient. When helping individual students, the teacher was less
dictated by the needs of the entire class thus could provide an elab-
orated explanation for the specific content for individual students.

In doing so, the teacher made a shift in the intended audience from
whole class instruction to individual focus. This shift inevitably
changed the ways in which teachers communicated and delivered
content to their students. While similar changes were observed

. among teachers in the current study, our findings indicated that
these changes in student-teacher interactions did not translate
to measurable changes in teachers' efficacy and instructional prac-
tices using scientific reasoning.

We propose two possible explanations for these results. First,
while ST Math offers a different mode of delivery of mathematics
content to students, it is not designed for significant impact on
teachers’ efficacy and instructional practice since the program re-
quires minimal active involvement by teachers while students
interact with the program. The adaptive features of ST Math allow
for more individualized instruction in which students can work at
their own pace. The teacher's primary role is to provide technolog-
ical and logistical support to students while they engage in the ST
Math games. Since a major component of ST Math is increased time
spent on computer-based instruction, a form of student engage-
ment that could potentially lead to less time for face-to-face stu-
dent-teacher interactions. The arrangement could affect teachers’
self-efficacy and beliefs about their teaching ability. This hypothe-
sis brings to light the strengths as well as weaknesses embedded in
CBL On the one hand, teachers must consider the positive impact
that ST Math can have on student achievement in mathematics,
as documented in the main study. On the other hand, teachers
experience a shift in their role as the instructor in the classroom
from more teacher-centered to less teacher-directed instruction.
These two seemingly opposing factors can influence teachers' per-
ceptions about their teaching efficacy. This paradox calls for fur-
ther investigation on the effects of CBI programs like ST Math on
teacher practice. Specifically, it would be useful to compare the re-
sults from the survey data to those currently collected by class-
room observers. These qualitative data will help us gain insights
about how ST Math may facilitate student learning and improve
teacher practice in the classroom.

Second, previous research has shown that teachers’ efficacy is a
malleable factor, one that is influenced by previous learning and
teaching experiences (Gresham, 2009; Swars, 2005). More impor-
tantly, teachers may experience a decrease in efficacy at the onset
of a curricular or instructional change. Teachers' perceptions of
self-efficacy increase following their experience of success with
the implementation of innovative practices (Stein & Wang, 1988).
If this is the case, then it is not surprising to see teachers who
implemented ST Math in their first year experience changes in
their instructional practices, some of which may have resulted in
a decrease in their sense of teacher efficacy. Alternatively, as stu-
dents spend more time on ST Math, teachers have less time inter-
acting with their students. This decrease in interactions between
students and teachers may cause teachers to believe that they play
a less important role in assisting students in learning mathematics.
However, previous research has shown that students perceived
that CBI did not replace the teacher but instead served as an
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additional resource to facilitate learning (Schofield et al., 1994).
Unless it can be shown that positive student-teacher interactions
decrease with increased student time on ST Math, and that teach-
ers’ efficacy decreases with decreased student-teacher interac-
tions, we can be confident that ST Math does not substitute the
role of the teacher in the classroom.

5.2. Potential effects of ST Math on teachers’ efficacy and practices

Contrary to the belief that students' time on ST Math may have
a negative effect on teacher efficacy, secondary analysis of teachers
in the treatment group indicated that time on ST Math and the
integration of ST Math in daily lessons were positively associated
with teachers’ self-efficacy, outcome expectancy, and instructional
practices using scientific reasoning. We discuss these findings in
the section below.

Teachers whose students spent more time on ST Math reported
a higher level of self-efficacy, outcome expectancy, and instruc-
tional practices using scientific reasoning, after controlling for
years of teaching experience and integration of ST Math in daily
lessons. This association may be attributed to changes in teacher-
student interactions as a result of CBI In a study examining high
school students’ perceptions of teacher competency, Frye and Dor-
nisch (2008) found that math and science teachers who used more
technology were perceived by their students as more competent
teachers. The authors argued that this association is driven by
the “spillover” effect in which students who perceived their teach-
ers as knowledgeable in one area (in this case, technology use) are
also more likely to perceive their teachers as knowledgeable in
other domains (i.e. teaching mathematics). This perception of tea-
cher competency undoubtedly can affect the ways in which stu-
dents interact with their teachers, which in turn affects how
teachers perceive their teaching efficacy and effectiveness. A simi-
lar pattern might apply to teachers implementing ST Math in their
classrooms. Like other forms of CBI which have been documented
to improve students’ motivation (Schofield et al., 1994), attitudes
(Ku et al., 2007), and achievement in mathematics (Harter & Ku,
2008; Ku et al,, 2007; Rehaag & Szabo, 1995; Shyu, 1999; Ysseldyke
et al,, 2004), students playing the games embedded in ST Math may
experience similar results. In fact, the main study examining the
effects of ST Math on student achievement indicated that students
using ST Math performed higher on state standardized tests com-
pared to their peers not using ST Math (Rutherford et al., 2010).
It is reasonable to suspect that increases in student learning may
have been first observed by the classroom teachers, which led to
increased teacher efficacy (Stein & Wang, 1988) and subsequently
changed teachers’ instructional practices to include higher order
thinking skills.

Our findings indicated that after controlling for years of teaching
experience and time on ST Math, there was a positive significant
relationship between integration of ST Math and various outcome
measures. Teachers who reported greater integration of ST Math
in their daily math lessons were also more likely to report having
greater self-efficacy, outcome expectancy, and instructional prac-
tices using scientific reasoning. This finding suggests not only that
skills students acquired from ST Math transferred into the regular
lessons but, perhaps more important, references of ST Math in var-
ious contexts positively affect teachers’ efficacy and instructional
practices. We suspect that teachers’ references to ST Math during
the regular instructional time can serve multiple purposes. First,
those references can help students review concepts introduced in
the ST Math games. Second, they allow the teacher to help students
make connections between the mathematical concepts taught in
the classroom and those presented in ST Math, These two practices
can reinforce concepts learned in both ST Math computer lab and
the regular classroom, thus improving student learning of

mathematics. As student learning increases, the teacher may be
more inclined to not only teach the basics but also to elaborate on
more complex concepts and integrate higher level thinking skills
such as scientific reasoning. Of course, this change in teacher
perceptions and practices may vary depending on the students’ ob-
served progress, teachers’ responsiveness to student learning, and
actual instructional modifications exercised by the teacher.

In sum, ST Math has the potential to improve student motiva-
tion and interest in the learning task. Seeing this, teachers may
be inclined to increase their time on ST Math and make references
about ST Math during regular instructional time to further engage
students in this content. As a result, students’ understanding of
mathematics would be expected to improve, which would lead
to increased teacher efficacy which in turn would influence teach-
ers to alter their instructional practices. Fig. 5 illustrates the pro-
posed relationships between these larger concepts.

More importantly, these processes signify a shift from teacher-
centered to student-centered instructional practices. During ST
Math sessions, students interact mostly with the games and only
ask for the teacher’s assistance when the computer game is unable
to provide them the support they need to progress to the next le-
vel. The adaptive feature of the ST Math program not only makes
learning math an individualized process but also gives students
the freedom to request the type and amount of help provided by
the teacher. When helping students instead of providing large
group instructions as the teacher typically does in the regular
classroom, the teacher can provide specific feedback to individual
students. During regular math instruction, the teacher can make
references to features found in ST Math. While this instruction
may be teacher-driven, the explicit connections derived from stu-
dents’ experiences and learning resulted from using ST Math. Since
students’ skills and knowledge may vary depending on their indi-
vidual ability, when making these connections teachers must draw
on their unique experiences with ST Math. The profound shift from
teacher-centered to student-focused instructional practices as a re-
sult of CBI should not be underestimated since it carries important
implications for effective teaching and learning of mathematics, a
topic that deserves further investigation.

5.3. Limitations of the current study

The current study has several limitations. First, while the cur-
rent research design allows for valid comparisons of differences
observed between teachers in the control and treatment groups,
data sources obtained from other methods such as teacher inter-
views and classroom observations during the ST Math computer
sessions and regular instructional time would provide more infor-
mation about how teachers’ beliefs and instructional practices may
change as a result of ST Math. Second, even though findings of the
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Fig. 5. The relationship between ST Math, student learning, teacher efficacy and
instructional practice.
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current study contribute to the broader knowledge about the ef-
fects of CBI on teacher efficacy and instructional practices, we cau-
tion the reader to generalize about the results as they as drawn
from a specific intervention focusing on mathematics instruction
for second, third, fourth, and fifth grade students. In addition, the
external validity or generalizability of the study may be limited
by the data available on teacher demographic (years of teaching
experience). Given the relatively small sample size, teachers in
our sample are likely to be different from teachers in the general
population. Third, teacher efficacy and teachers’ instructional prac-
tices take time to develop and may take an even longer time to
change. Longitudinal data collected from this multi-year interven-
tion will allow us to document changes in teacher efficacy and
practices over time. Finally, we do not yet fully understand the role
that teachers play nor the long-term effects that this type of
instruction may have on teachers’ beliefs about teaching and learn-
ing. Further investigation is needed on how CBI influences the var-
ious aspects of teacher practices in the classroom and how the
specific features of the intervention may enhance teaching and
learning of mathematics.

6. Conclusions

While the implementation of Spatial Temporal Mathematics (ST
Math) did not yield significant effects in teachers’ self-efficacy, out-
come expectancy, and instructional practices using scientific rea-
soning, our secondary analysis indicated that time on ST Math
and the integration of ST Math into daily instructions were posi-
tively associated with teacher efficacy and changes in instructional
practices. More significantly, these findings highlight the potential
impact of computer-based instruction (CBI) on the teaching of
mathematics. As technological advancements continue to expand
globally, their influence can be observed in national policy discus-
sions and in local educational agencies throughout the US. Conse-
quently, teachers will need to be prepared for the integration of
technology-based instruction in their classrooms. These findings
suggest that support for building teacher efficacy and instructional
practice must be available in order to assist teachers make what
will be an inevitable transition to more learner-centered instruc-
tional practices.
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