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Abstract 

The ability to draw connections between concepts, problems, or representations is crucial to mathematical 
proficiency, though teachers face challenges in capitalizing on classroom opportunities to develop such 
connected thinking.  An experiment with fifth-grade students tests theoretically grounded cuing strategies for 
supporting learning from instructional analogies. Posttest results indicate that an analogy between division of 
natural numbers and rational numbers improved students' proficiency in dividing fractions regardless of the 
addition of analogical cuing strategies, but that the additional cuing led to more conceptual, flexible problem 
solving. These cuing strategies may be effective ways to enhance students' ability to draw connections across 
mathematics and capitalize on classroom learning opportunities.  
Keywords: analogy, cognitive science, mathematics education, division of fractions 
1. Introduction 
1.1 Drawing Connections within Mathematics Instruction 

Drawing meaningful relationships between mathematical concepts, procedures, and problems lies at the heart of 
the U.S. National Research Council’s multi-strand definition of mathematical proficiency (2001; National 
Mathematics Advisory Panel, 2008). Reflecting the views of the international research community, the NRC 
emphasizes that mathematical understanding requires interacting with mathematics as a connected system. 
Psychologically, however, the cognitive underpinnings of developing schematized, organized knowledge 
representations are complex and involve high processing load (see Richland, Stigler & Holyoak, 2012). Thus 
while there is general agreement regarding the importance of leading students to develop richly connected 
mathematical knowledge, designing and implementing such instruction requires careful consideration of the 
psychological processes involved.  Conducting classroom instruction that effectively draws on children’s 
knowledge representations and cognitive resource capacities to enable them to draw deep conceptual connections 
is known to be challenging for teachers (e.g., Smith, Hughes, Engle, Stein, 2009; Stein, Engle, Smith & Hughes, 
2008). 
The current paper, therefore, explores instructional analogies as one tool for making explicit connections 
between mathematical representations. This cognitive act is well studied, so educational design can build on 
existing literature regarding the necessary processing resources. Instructional analogy is the process of drawing 
students into making connections between the conceptual structures of two or more representations (Gentner, 
1983; Richland, Holyoak & Stigler, 2004). In mathematics, this signifies the act of finding similarities between 
the mathematical structures within two or more representations. Representations may include problems, concepts, 
solution strategies, or other non-mathematical phenomena (e.g., noting similarities between division of integers 
and sharing cookies among friends, or between division of integers and division with variables) (English, 1997). 
1.2 Defining Analogy 

The literature generally distinguishes between analogy, the process of finding similarities based on structural 
features (e.g., two problems invoking division), versus the broader case of pure similarity, which would include 
drawing similarities based on surface, or appearance, features (e.g., comparing two word problems using ‘cookie 
sharing’ as a context that may or may not both rely upon division) (Gentner, 1983).  The latter form of 
similarity is easier and more common among novices to a domain, while experts are more likely to draw purely 
structural connections (Gentner & Rattermann, 1991; Chi, Feltovich & Glaser, 1981). 
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Theorists have long argued that drawing such structural similarities via analogical reasoning lies at the core of 
rigorous, creative mathematical thought (English, 1997; Hilbert, 1900; Polya, 1954; Skemp, 1976). Recognizing 
commonalities and differences across mathematical structures is a basic part of doing mathematics (Gallistel & 
Gelman, 2005; Gelman & Gallistel, 1978/1986).  It is also a basic part of teaching mathematics (Alexander & 
Buehl, 2004; English, 2004; Chiu & Tron, 2004; Richland, Zur & Holyoak, 2007).   

In spite this importance of analogical thinking to mathematics, experimental research suggests that learners 
without high content knowledge, typically the case in a classroom context, often fail to notice or benefit from 
instructional analogies if they are not provided with very explicit cues that draw their attention to relational 
similarities (e.g., Gick & Holyoak, 1980, 1983; Novick & Holyoak, 1991; Reed, 1989; Ross, 1987, 1989).    

Teachers are the natural candidates to provide such explicit cues to their student learners; however, research 
examining teacher instructional practices suggest that many teachers do not adequately provide these (Richland, 
Zur & Holyoak, 2007).  Further, this is particularly challenging for new teachers, who may create opportunities 
for comparison but not follow through with the explicit direction for how students should identify structural 
correspondences between mathematical representations (Ball, 2000; Smith, Hughes, Engle, Stein, 2009; Stein, 
Engle, Smith & Hughes, 2008). 
1.3 Strategies for Supporting Mathematical Instructional Analogies 

This paper considers and tests strategies for providing explicit cues that will improve the effectiveness of 
mathematical instructional analogies. This will also provide some clarity for translating research findings into 
practice for future teachers. An experiment tests the impact of using a combination of common teacher behaviors 
identified as being used frequently in the highest achieving countries, but not in the lower-achieving countries, 
within the video-data collected as part of the Third International Mathematics and Science Study-R (Hiebert et al, 
2005).  The most common of these practice included making key mathematical representations visible (written 
on the board or elsewhere), making multiple representations visible simultaneously, aligning these 
representations so that their similarities are emphasized, and using gestures that move back and forth between 
these representations. Since there are no outcome data that can be directly linked to the TIMSS-R data, at present 
there is no direct data available that these will promote learning in children.  

These tested practices are described in more detail below. This paper then reports an experiment evaluating the 
hypothesis that the most pedagogically common of these strategies will improve children's mathematics learning 
when supporting an analogy in a classroom setting outside of those countries.  Specifically, fifth-grade U.S. 
students were given instruction on a traditionally challenging concept, division of fractions, through a videotaped 
instructional analogy that did or did not include these support strategies.  Learning was tested immediately and 
after a delay to evaluate impact on both understanding and retention. Finally, implications for optimizing 
teachers' everyday instructional analogies are considered.  
The strategies tested in the current paper derived from studies of actual classroom practices in order to move 
toward feasible, practice-relevant approaches. The video portion of the Trends in International Mathematics and 
Science Study (TIMSS 1999; Hiebert et al, 2003) provided an opportunity to systematically study everyday 
classroom teaching practices in seven countries. Insights from the main dataset are informative about teachers' 
practices of using problems to draw connections (Hiebert et al, 2005) and a secondary analysis provides specific 
data on instructional analogies (Richland et al, 2007).  

The most recent TIMSS study (Hiebert et al, 2005) compared teaching practices in seven countries with a range 
of student mathematics achievement profiles, with the United States and Australia regularly scoring behind 
Japan, Hong Kong, the Netherlands, Czech Republic, and Switzerland.  Importantly, the only reliable 
difference that correlated with national variations in student achievement was how they supported students in 
making mathematical connections. In two steps, coders measured how likely teachers were to use and support 
learning from "making connections problems" - problems with the potential to draw connections across math 
facts, procedures, or concepts.  Coders first identified the frequency with which teachers used these problems, 
and second, they scored the way that the problems were actually instructed by looking at teacher questions 
and/or discussion to assess the likelihood that students were actually engaged with making the intended 
connections.  

The data revealed that teachers in all countries used these making connections problems, but there were large 
differences in the way the teaching of the problems was enacted. Teachers in all of the highest-achieving 
countries were significantly more likely to instruct the problems such that the connections were explicitly drawn 
out than in Australia, and Australian teachers were numerically more likely to do so than teachers in the United 
States.  In fact, U.S. teachers did so approximately zero percent of the time. This was the single pattern in the 
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TIMSS 1999 analyses that mirrored student achievement levels, suggesting that drawing connections may be 
related to high quality teaching, though direct outcome data were not available in this dataset (Hiebert et al, 2003; 
Hiebert et al, 2005). Most importantly, this analysis reveals that providing opportunities for drawing connections 
through using high quality problems is not the same as teaching in ways that enable students to make these 
connections.  

A closer analysis of teacher practices of drawing connections through analogies in a subset of these data also 
revealed variations in whether teachers supported students in performing analogical thinking when teachers 
made these opportunities.  In a study of the U.S., Hong Kong and Japan, Richland, Zur & Holyoak (2007) 
identified all instructional analogies, and then coded these for the presence or absence of six pedagogical 
practices, instructional strategies, likely to support students' analogical thinking based on the experimental 
literature. As noted above, simply making an analogy available to learners does not reliably produce the desired 
connected reasoning (e.g., Gick & Holyoak, 1980, 1983; Reed, 1989; Ross, 1987, 1989, Zook & DiVesta, 1991).  

The three of these strategies examined in this paper are described briefly.  The first two pedagogical strategies 
reduce processing demands on learners. Dual task and cognitive neuropsychological methodologies have 
produced evidence that analogical reasoning imposes high processing demands on the working memory and 
central executive systems for two aspects of analogical reasoning: representing and integrating relevant relations, 
and controlling attention to competitive, irrelevant information (e.g., Cho, Holyoak & Cannon, 2007; Halford, 
1993; Halford, Wilson & Phillips, 1998; Krawczyk, Morrison et al, 2008; Richland, Morrison & Holyoak, 2006). 
In mathematics education, therefore, the instructor must be cognizant of children's developing working memory 
capacity that limits their ability to hold and manipulate complex representations in mind (English & Halford, 
1995). Two strategies for doing so were coded: Strategy 1) making compared representations visible on the 
board or elsewhere, and Strategy 2) keeping multiple representations visible simultaneously, so that learners can 
reference one while trying to understand the second, without having to hold it in working memory.  
The next code measured linking gestures as a tool for helping learners notice and attend to the analogy, reducing 
general processing demands as well as more specifically directing attention to move between the conceptually 
related representations. Strategy 4) was: use gestures that move between a source and target representation. 
Linking gestures are thought to draw learners' attention to the objects being compared (Alibali & Nathan, 2007).  

Results from analyses of these strategies used across Hong Kong, Japanese, and US teachers revealed that while 
there were no significant differences in the number of analogies per lesson used by teachers in the three regions, 
the use of coded principles for supporting these analogies varied greatly.  Japanese and Chinese teachers were 
both statistically significantly more likely to use all of the coded practices than were U.S. teachers. Thus as in 
the larger TIMSS 1999 dataset findings, these results suggest again that supporting student thinking during 
classroom analogies may be an important element of mathematics achievement. Again, however, these data are 
not causal, since no direct outcome data were available to link classroom practices to student learning.  

The current manuscript describes an experiment testing these strategies in a classroom mathematics setting with 
U.S. fifth-grade students. The experiment examined the impact of a high quality analogy to teach division of 
fractions by drawing connections to division of natural numbers.  The analogy was either highly or minimally 
cued.  Drawing on the methodology used in prior experiments with undergraduates (Richland & McDonough, 
2010), the instruction was provided by videotape to maintain experimental control and enable random 
assignment to treatment condition within classrooms.  
Division of fractions as a content area was selected for study because this is a concept frequently taught 
algorithmically, and is difficult to teach so that students understand more than rote use of the algorithm (National 
Research Council, 2001). The National Council of Teachers of Mathematics (NCTM, 2000) recommended the 
tested analogy, framing division of rational numbers as similar to division of natural numbers by considering 
how many times the dividend can be divided into parts the size of the divisor. Division of fractions was also 
recently identified as a challenge area and as a "major goal for K-12 mathematics education" (National 
Mathematics Advisory Panel, 2008, p. xvii).  Further, based on this difficulty, successful posttest performance 
could be attributed to the instruction, versus basic quantitative intuitions.  
2. Methods 
2.1 Participants 
Participants were recruited from two fifth-grade classes within an independent school in an upper-middle class 
urban environment.  Thirty-four 11-12 year old boys and girls participated.  Four participants were excluded 
for failing to complete the delayed posttest due to absence.  
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2.2 Materials 

Video. Two instructional videos were developed, one for a “minimal cuing” condition, and one for a “high 
cuing” condition. An unfamiliar mathematics teacher taught an instructional analogy derived from an NCTM 
recommendation to align concepts of division with natural numbers and division of rational numbers. Both 
videos lasted approximately ten minutes.  
In the videos for both conditions the teacher presented the same two division problems: 24 ÷ 8 = ? and 1/3 ÷ 1/6 
= ?  The content covered in both videos was the same. Thus, in both conditions the student could have noticed 
similarities and an analogy between these two problems.  Both were certainly categorized as division.  In both 
conditions the student was given an embedded assessment opportunity to solve the division of fractions problem 
on paper while the video paused before being given the solution, so a measure was taken of immediate learning.  

 
Figure 1. Screen picture of material in high cuing instructional video, comparing two representations of division 

 

The experimental manipulation took place in the details of how the teacher supported the children's analogical 
reasoning.  The "high cuing" condition included a composite of all but one of the recommendations identified 
in Richland, Zur and Holyoak's (2007) video analyses. The teacher used a highly familiar context (division of 
natural numbers) as a source.  She created a visual representation of the source context by writing the problem 
on the board while describing it using a specific relational structure ("one way to think about dividing 24 by 8 is 
to ask how many groups of 8 can fit into a set of 24"). The equation was then left visible on the board while 
teaching the target problem - division of fractions ("how many groups of 1/6 can fit into a set of 1/3?").  
Students were expected to require greater support to visualize the groups and set size for the target problem, so 
the equation was accompanied by two circles divided into segments, the first divided into 1/3s, and the second 
divided into 1/6s.  The first had one of the thirds shaded.  See Figure 1 for a screenshot of the board during the 
videotaped instruction.  The teacher then showed that two 1/6 size segments could be shaded to cover the same 
space as the 1/3 (the bottom two 1/6s). The two representations of the equations were written on the board in a 
similar way so that children could easily identify their common structure.  Lastly, the teacher gestured between 
the two problems (divisor to divisor, dividend to dividend) to further clarify their structural similarity. Thus the 
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cuing support strategies used to develop the composite "high cuing" condition included all but the imagery 
strategy identified in the video data.  

In contrast, in the "minimal cuing" video the teacher first taught the fraction problem (1/3 ÷ 1/6 = ?) the same 
way as in the high cuing video.  The teacher then gave the division of natural numbers problem (24 ÷ 8 = ?) 
with the statement, "lets finish with an easy one."  The teacher did not provide the above cues to support the 
relational thinking and to help the students leverage their prior knowledge about division of natural numbers to 
better understand the new context.  The fraction problem was not left visible to the student while solving the 
natural numbers problem.  

Assessments. A pretest, a posttest, and a posttest following a delay were constructed.  On those tests, two main 
types of problems were administered on all tests and two additional types of problems were added to the 
posttests.  Problem types that were not repeated across at least two of the tests were not included in the analyses, 
and two problems were excluded from analyses due to floor performance in both conditions.  The pretest 
contained four total questions that were analyzed, the posttest contained five, and the delayed posttest contained 
six. Table 1 describes all questions analyzed in this paper. 

 
Table 1. The distribution of analyzed problems that were administered on each test 

 Background 
Knowledge of 

Fractions 

High Similarity 
problems 

 

Low Similarity 
Problem 

Word Problem 

Sample 
Problem 

Please shade 
1/3 of this 
circle 

½ ÷ 1/8 = _ 
with circle 
representation 

5 ÷ 1/5 = _ 
with triangle or 
circle 
representation 

How many shelves can 
be made from a 5m 
board if each shelf is 
¼ m long 

Pretest 2 1 1  
Posttest  1 2 1 
Delayed- 
Posttest 

 1 2 1 

 
On the pretest, two questions were administered to ensure very basic background knowledge of fraction 
representations on all tests.  These baseline knowledge questions asked students to shade parts of a diagram to 
represent fractions. Students were asked to shade one fourth of a circle, and 1/3 of a rectangle.  

All three tests (pretest, posttest, delayed posttest) included one high similarity problem that had the same 
mathematical structure and form as the fraction problem taught in the instruction.  These problems consisted of 
the same type of rational numbers taught in the training video - fractions smaller than one - and the same picture, 
two circles - one to represent the dividend and one to represent the divisor.  The dividend was always greater 
than the divisor.  The problem on the pretest was ½ ÷ 1/8 = ____, and participants saw two circle 
representations, one divided into ½ and one divided into 1/8s. Participants were always asked to use the diagram 
to show their answer. All high similarity problems took the same form but the numbers were changed for each 
problem.  

All tests also included low similarity problems.  The pretest included one problem, and the posttests each had 
two. The low similarity problems involved a conceptual change in representation from the problem taught during 
the instruction.  The dividend was increased to a value greater than one.  In half the problems, the provided 
representation showed multiple objects (rectangles or triangles), and in the other half, the representation depicted 
the two circles used in training.  For example, the problem calculation on the posttest was 5 ÷ 1/5 = ____, 
which necessitates the use of five rectangles to represent the dividend if a whole rectangle represented "one" as it 
had for the instructed problem. The five rectangles were provided next to the problem for participants' use, but 
the rectangles were not divided into 1/5s. On the problems that used a representation other than the two circles as 
was included in the training, participants received a scaffold. Students were first asked to "shade 1/5 of the 
following object" (e.g., a rectangle), and then were asked to: "Imagine the above rectangle was one of the 
rectangles in the next set to help you with the next problem." This was intended to help them make the leap of 
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inference from the process of dividing when the divisor was greater than one.  To maximize comparability 
across tests, all other low similarity problems used the same form (integer divided by fraction = ____) but with 
different numbers and shapes (e.g., triangles rather than the rectangles). 

Finally, the posttest and delayed posttest each included a word problem.  The word problem was always 
presented last on a different page, and included the same type of calculations as in the extension problems but 
they were set in different everyday contexts (e.g., "how many shelves can be made from a 5 meter board if each 
shelf is ¼ meter long").  The word problem format was designed to provide high scaffolding to allow 
participants to solve the problem with or without use of an algorithm.  Participants were asked to answer 
step-by-step questions that asked them to 1) translate the problem into a mathematical equation, 2) draw a 
representation, and 3) provide a solution to the word problem.  

Test responses for all questions were coded on a scale from 0-1.  A code of 1 was given for an accurate 
numerical answer, .5 was given for either an accurate numerical answer with an incorrectly drawn representation 
or only a correctly drawn representation, and 0 was given for both incorrect or a blank response.  Intercoder 
reliability was above 96% agreement when tested on 20% of the data.  
Written instructions differed on each test.  Instructions on the pretest simply asked participants to try their best.  
The posttest began with the same instructions but also included an explicit hint to 'use the video to help solve 
these problems'.  Since this was both an assessment and an opportunity for participants to practice the division 
of fractions strategy, it was deemed important that students at minimum noticed the relevance of the video to the 
posttest. The delayed posttest instructions were the same as the pretest instructions and did not include the hint.  
Thus the delayed posttest tested the limits of the instruction on participants' retention and ability to notice the 
relevance of the video to the division of fraction problems. 
3. Procedure 

In a between-subjects design, participants were randomly assigned to one of the two instructional conditions 
(Minimal Cuing Condition, N=16; High Cuing Condition, N=14). Participants were tested in a group classroom 
setting during mathematics instructional time with each student assigned to his or her own computer with 
headphones.  The computer was only used to allow students to view the experimental or control videos during 
the instruction phase in order to maintain consistency between participants within each condition. All tests were 
administered in paper-pencil form with unlimited time. Problems were administered in the same order for all 
participants. The pretest was administered a day prior to instruction. One posttest was administered immediately 
after instruction, the second after a one-month delay.   
4. Results 

There was no difference between conditions on the assessment question embedded during the instructional video 
in which students attempted to solve the fraction division problem independently after some instruction, as both 
groups scored highly, (High Cuing: M = 88%, SD = .29; Minimal Cuing: M = 100%, SD = 0). However, in order 
to ensure equality between the groups, only participants who scored 100% on this embedded assessment were 
included in the following analysis (3 participants were excluded).  Because the embedded assessment was 
administered immediately following instruction on the same problem with information still visible on the 
computer, failure to solve the problem correctly indicated a lack of attention to the original instruction. 
4.1 Impact of the Training Intervention 
A Shapiro-Wilk test of normality, for use with small sample sizes, indicated that the pretest, posttest and delayed 
posttest data were not normally distributed (Shapiro-Wilk, 1965), (pretest: W = .82, p < .001; posttest: W = .78, 
p < .001; delayed posttest: W = .86, p < .01). Thus all further analyses were conducted with non-parametric 
statistics.  

A related-samples Friedman's two-way analysis of variance by ranks, executed stepwise step-down, examined 
differences between average test performance on the pretest, the posttest, and the posttest after delay.  
Collapsed across conditions, the tests revealed the analogy led to significant learning from the pretest to both 
posttests for high similarity problems, X2(2) = 14.5, p = .001 (pretest: M = .53, SD = .48; posttest: M = .96, SD 
= .19; delayed posttest: M = .67, SD = .46).  Low similarity problems showed the same pattern of growth, X2 (2) 
= 22.2, p < .001 (pretest: M = .22, SD = .42; posttest: M = .71, SD = .32; delayed posttest: M = .42, SD = .44).  

The word problems were not measured on the pretest so pretest-posttest gains could not be assessed, but a 
related-samples Wilcoxon Signed Ranks Test (Wilcoxon, 1945) revealed no differences among the posttest and 
delayed posttest word problem scores (W+ = 30, p = .27; posttest: M = .61, SD = .45; delayed posttest: M = .75, 
SD = .42). 



 7 

4.2 Relationship between experimental condition and test performance 

A logistic regression was next used to determine which variables significantly predicted high versus low cuing 
condition membership. Variables regressed on condition were 1) pretest average performance (average of high 
and low similarity problem), 2) posttest high similarity problem average (average of high similarity problem 
scores on posttest and delayed posttest), 3) posttest low similarity problem average (average of low similarity 
problem scores on posttest and delayed posttest), and 4) posttest word problem average (average of word 
problem scores on posttest and delayed posttest).  See Table 2 for means.  Table 3 summarizes the results of 
these analyses. 
 
Table 2. Means and standard deviations for high and low cuing groups 

 High Cuing 
n = 13 

Low Cuing 
n = 14 

Baseline: Pretest Average  .44 (.38*) .32 (.36) 
Posttest High- Similarity Problems .77 (.26) .86 (.21) 
Posttest Low- Similarity Problems .68 (.30) .46 (.33) 
Posttest Word Problems .62 (.33) .75 (.34) 

* Standard deviations reported in parentheses. 
 

The overall fit of the regression model was indicated by a nonsignificant finding on the Hosmer-Lemeshow 
goodness of fit test, for use in small sample size models regressing continuous predictor variables on a 
dichotomous test variable (Hosmer-Lemeshow, 2000), X2

HL (7) = 6.40, p = .49. The nonsignificant finding 
suggests that the model prediction is not significantly different from the observed values of the selected variables, 
therefore the model fits the data. 
The pretest did not predict condition membership, indicating that the initial randomization across conditions was 
adequate and that there were no preliminary differences between conditions. 
 
Table 3. Binary logistic regression results: Prediction of membership in experimental (high cuing) condition 

Predictors B S.E. Wald df Sig. Exp(B) 

Average pretest score - .53 1.47  .13 1 .72 .59 
Average posttest high similarity 2.65 2.40 1.22 1 .27 14.20 
Average posttest low similarity -3.84 1.84 4.31 1 .04 .02* 
Average word problem 2.30 1.79 1.67 1 .44 10.02 
Constant -1.30 1.70  .59 1 .44 .27 

*p > .05 
 

Among the individual variables, only the low similarity composite variable predicted condition membership, as 
shown in Figure 2. The odds that students scored highly on low similarity problems following instruction were 
significantly higher in the high cuing condition than in the low cuing condition such that each low similarity 
problem scored correctly on the posttests increased the likelihood that participants were in the high cuing 
condition by .021. No associations existed between students' performance on high similarity problems or word 
problems on either the immediate or delayed posttest.  
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Figure 2. Mean differences on posttest items by condition 

 
5. Discussion and Conclusions 
The experimental results indicate that the division of fractions analogy was effective for all learners, such that 
when collapsed across conditions, participants gained from pretest to the posttest on both high and low similarity 
problems. Further, students in the high cuing condition outperformed those in the low cuing condition on low 
similarity problems - problems that required an extension from the instruction, though their performance didn't 
differ on problems that appeared similar to the instruction.  

These data replicate and extend the results of Richland and McDonough (2010) to a classroom context with 
upper elementary school children and a fraction operation context. As discussed in that paper, the patterns of 
posttest results lend insight into the cognitive benefits of providing support cues.  Specifically, the results allow 
for teasing apart whether pedagogical cues helped learners develop better memory for the instructed strategy or 
more expert-like ways of focusing on the schematic elements of a new problem. The evidence does not support 
the interpretation that cuing strategies improved learners' memory for the instructed strategy, since one would 
expect high cuing to be related to all types of posttest problems, most particularly the high similarity problems 
that relied mainly on retention of the instructed solution strategy, which was not the case.  

Thus rather, these data support the interpretation that high cuing led to more expertlike, schematized 
representations that facilitated students in generalizing and extending the instruction solution strategy, leading to 
a relationship between low similarity problems and the high cuing condition. Many have argued that learning 
from analogies helps learners develop more schematic knowledge representations, meaning that rather than 
retaining the details of taught problems, students will rather primarily remember the main rule or underlying 
principle in abstract terms (e.g., Gick & Holyoak, 1983; Vanderstoep & Seifert, 1993).  This can aid the learner 
in generalizing to another context, since their understanding of the problem is not tied to the surface context or 
appearance of the problem (e.g., whether its a problem about trains, see Bassok, 1997), but rather to the abstract 
mathematical structure.  
At the same time, learners did not seem to have developed purely schematic representations of the instructed 
problem, because they showed different patterns of performance on high versus low similarity problems. This 
suggests that learners in both conditions stored the mathematical concept along with the main instructional 
problem and diagram. If they had not, there should have been no difference between the high and low similarity 
problems.  

Participants in the high cuing condition did, however, reveal more flexible knowledge that allowed them to 
notice similarities based on mathematical commonalities between a new extension problem and the instruction, 
and to draw inferences about how to solve those problems. Domain experts are well known to more readily 
attend to structure over surface feature when compared with novices (e.g. Chi & Ohlsson, 2005; Chi Feltovich & 
Glaser, 1981; Schoenfeld & Hermann, 1988).    
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Thus, this work provides data about detailed practices for supporting students in developing mathematical 
representations that more closely resemble mathematics experts through drawing connections between 
mathematical representations and concepts, which is an instructional construct posited to rest at the heart of 
mathematical proficiency (National Research Council, 2001).  Future work to examine the role of these 
cognitive support strategies across more analogies and mathematical contexts would strengthen our 
understanding of how these principles impact learning more broadly. Additionally, a study of algebra problem 
solving with middle school students suggests that the efficacy of analogies may depend upon the students' 
proficiency at the beginning of instruction (Rittle-Johnson, Star & Durkin, 2009). Subsequent studies will need 
to address the role of students' entry knowledge on the impact of cuing strategies.   

At present, however, the goal is to develop strategies that may aid teachers in optimizing their existing practices 
of using comparative opportunities in mathematics teaching. In a related effort, Stein, Engle, Smith, and Hughes 
(2008; Smith, Hughes, Engle, & Stein, 2009) posit the benefits of providing general pedagogical strategies to aid 
novice teachers in engaging students into the cognitively rich yet instructionally challenging practice of 
productive mathematical discussions.  One of the Stein et al (2008) recommendations is to draw connections, 
and the currently proposed strategies may support teachers in effectively accomplishing this goal.  

The results have classroom implications. First, these data suggest that introducing division of fractions as similar 
to dividing one natural number into another is powerful for helping students to understand the concept of 
division operations with fractions.  The analogy was effective at boosting performance during, immediately 
after, and after a month delay for all participants, even when including problems that required a leap of inference 
to the case where the dividend is greater than one.  While seemingly straightforward, this is not often practiced, 
with textbooks more often introducing division of fractions by building on addition, subtraction, and 
multiplication of fractions (e.g., University of Chicago School Mathematics Project, 2007). 
Second, though the analogy was beneficial for all participants, adding pedagogical cues to support the analogy 
led to more flexible, expert-like understanding. As described above, these cuing strategies were derived from 
everyday classroom practices and were designed to align with experimentally-based research on processing 
strategies and support, while requiring minimal resource and time allocations.  

Finally, the data also revealed why teachers may not currently register the need to change their current practices 
for drawing connections.  There were no differences in performance between conditions on the embedded 
assessment or on an immediate posttest for problems with high similarity to the instructed problem. Even after a 
month delay there were no differences in performance on high similarity problems.  Thus, if teachers in the low 
cuing condition had used only these measures to determine whether participants had learned from the analogy, 
they would likely have determined that their students had learned adequately and there was no need to add 
additional support cues.  The use of a variety of different kinds of assessment problems that require extension 
of the instruction and test learners' ability to make inferences are thus essential for a full diagnosis of students’ 
understanding, and testing after a substantial delay is equally important.  
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